A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the shallow water equations

نویسندگان

  • Giovanni Tumolo
  • Luca Bonaventura
  • Marco Restelli
چکیده

Article history: Received 21 February 2012 Received in revised form 30 May 2012 Accepted 4 June 2012 Available online 16 June 2012

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-lagrangian Transport Algorithms for the Shallow Water Equations in Spherical Geometry

Global atmospheric circulation models (GCM) typically have three primary algorithmic components: columnar physics, spectral tran-form, and semi-Lagrangian transport. In this study, several varients of a SLT method are studied in the context of test cases for the shallow water equations in spherical geometry. A grid point formulation is used with implicit, semi-implicit or explicit time integrat...

متن کامل

Quadrati Spline Galerkin Method for the Shallow Water Equations on the Sphere

Currently in most global meteorological applications, the spectral transform method or low-order finite difference/finite element methods are used. The spectral transform method, which yields high-order approximations, requires Legendre transforms. The Legendre transforms have a computational complexity of O(N3), where N is the number of subintervals in one dimension, and thus render the spectr...

متن کامل

A flexible and efficient DG discretization for Numerical Weather Prediction

As a first step towards construction of a DG based dynamical core for high resolution atmospheric modelling, a semi-implicit and semi-Lagrangian discontinuous Galerkin method for the SWE on the sphere and for nonhydrostatic vertical slice equations is proposed and analysed. The method is equipped with a simple p-adaptivity criterion, that allows to adjust dynamically the number of degrees of fr...

متن کامل

GPU Acceleration of a High-Order Discontinuous Galerkin Incompressible Flow Solver

We present a GPU-accelerated version of a high-order discontinuous Galerkin discretization of the unsteady incompressible Navier–Stokes equations. The equations are discretized in time using a semi-implicit scheme with explicit treatment of the nonlinear term and implicit treatment of the split Stokes operators. The pressure system is solved with a conjugate gradient method together with a full...

متن کامل

Well-balanced r-adaptive and moving mesh space-time discontinuous Galerkin method for the shallow water equations

In this article we introduce a well-balanced discontinuous Galerkin method for the shallow water equations on moving meshes. Particular emphasis will be given on r-adaptation in which mesh points of an initially uniform mesh move to concentrate in regions where interesting behaviour of the solution is observed. Obtaining well-balanced numerical schemes for the shallow water equations on fixed m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 232  شماره 

صفحات  -

تاریخ انتشار 2013